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The ground-state properties of a spin S=1 /2 tetrameric Heisenberg antiferromagnetic chain with alternating
couplings AF1-AF2-AF1-F �AF and F denote antiferromagnetic and ferromagnetic couplings, respectively� are
studied by means of the density-matrix renormalization-group method. Two plateaus of magnetization m are
found at m=0 and 1/4. It is shown that in such a spin-1/2 AF system, there is a gap from the singlet ground
state to the triplet excited states in the absence of a magnetic field. The spin-spin correlation function decays
exponentially, and the gapped states have a nonvanishing string order, which measures a hidden symmetry in
the system. By a dual transformation, the string order is transformed into a ferromagnetic order and the hidden
symmetry is unveiled to be a Z2�Z2 discrete symmetry, which is fully broken in the gapped states. This
half-integer spin Heisenberg AF chain is in a Haldane-like phase suggesting that the present findings extend the
substance of Haldane’s scenario. A valence-bond-solid state picture is also proposed for the gapped states.
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I. INTRODUCTION

Even though many models have been extensively studied
experimentally and theoretically, one-dimensional quantum
spin systems are still an attractive field in low-dimensional
quantum magnetism. One of their motivations is from
Haldane’s conjecture.1 Haldane proposed that an isotropic
Heisenberg antiferromagnetic chain �HAFC� with an integer
spin has a finite gap from the singlet ground state to the
triplet excited states, and the spin-spin correlation function
decays exponentially; while the HAFC with half-integer spin
has a gapless spectrum and a correlation function with
power-law decay. Although Haldane’s conjecture has been
confirmed experimentally and numerically in many systems,
there is not a rigorous proof until now. By means of the
valence-bond states, a rigorous disordered ground state for
the biquadratic Heisenberg Hamiltonian with spin S=1 was
proposed by Affleck, Kennedy, Lieb, and Tasaki �AKLT�.2
This AKLT model was shown to have a spin gap from the
singlet ground state to the triplet excited states, an exponen-
tially decaying correlation function, and a nonlocal topologi-
cal order, which is different from the long-range order of
spin-spin correlation, thus confirming the Haldane’s conjec-
ture based on a specific model. This nonlocal string order,
which is regarded as a hidden antiferromagnetic Néel order,
was found by Den Nijs and Rommelse3 in the spin-1 HAFC.
Kennedy and Tasaki4 introduced a nonlocal unitary transfor-
mation to reveal the hidden symmetry for this string order,
which was found to be a discrete Z2�Z2 symmetry. The
Haldane phase of integer-spin HAFC is thus characterized by
the complete breaking of the Z2�Z2 symmetry.4

Besides the isotropic HAFC with integer spin, Haldane
phase has also been found in other spin systems, like some
S=1 /2 spin ladders5–7 and spin-1/2 ferromagnetic-
antiferromagnetic �F-AF� alternating Heisenberg chain.8 In
these systems, the gap and the string order vary monotoni-
cally with the ratio between F and AF interactions �JF /JAF�
and when JF→−� recover the values obtained for the spin-1

HAFC. The weak F coupling phase belongs to the same
phase as the strong F coupling case. When the F couplings
dominate the AF ones, the dimers of two spins coupled by F
interactions behave as spin-1, and the systems reduce to the
spin-1 HAFC. The Z2�Z2 symmetry is also fully broken in
these systems, which indicates that the systems belong to the
Haldane phase.

In this paper, we are concerned about the existence of a
Haldane-like phase in an AF chain with half-integer spin,
which, unlike the spin-1/2 F-AF alternating chain, could
not be reduced to a HAFC with integer spin in any circum-
stance. The spin-1/2 trimerized F-F-AF Heisenberg chain
might be a choice but its spectrum is gapless.9 Here we con-
sider a spin S=1 /2 tetrameric HAFC with alternating
couplings AF1-AF2-AF1-F. As far as we know, there has
been no report on any tetrameric antiferromagnet yet and
only a tetrameric ferrimagnetic Heisenberg chain com-
pound Cu�3-Clpy�2�N3�2 �F-F-AF-AF� has been widely
studied.10–15 By means of the density-matrix renormali-
zation-group �DMRG� method and dual transformation, we
have found that this spin-1/2 tetrameric system is in a gapped
phase; most properties of which are compared with the fea-
tures of the Haldane phase. Most importantly, the phase we
found has a string order and a hidden Z2�Z2 symmetry,
which is also fully broken in this system. This alternating
tetrameric HAFC with spin-1/2 is in a Haldane-like gapped
phase. In this sense, our findings extend the substance of
Haldane’s scenario, which implies that the spin gap can also
appear in certain half-integer spin HAFCs.

The rest of this paper is organized as follows. In Sec. II,
we shall introduce the model Hamiltonian and give a brief
discussion on the isolated tetramer systems. In Sec. III, we
shall present our DMRG results on the magnetic properties
of the system in a longitudinal magnetic field, as well as the
gap behaviors, spin-spin correlation function, and string or-
der in the gapped ground states in the absence of the external
field. A dual transformation is introduced to the model in
Sec. IV to unveil the hidden symmetry. In Sec. V, we shall
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propose a valence-bond-solid-state picture and a trial wave
function for the gapped states. Finally, a summary and dis-
cussion will be given in Sec. VI.

II. SPIN-1/2 TETRAMERIC HEISENBERG
ANTIFERROMAGNETIC CHAIN

The Hamiltonian of the isotropic tetrameric HAFC with
alternating couplings AF1-AF2-AF1-F in a longitudinal mag-
netic field is given by

H = �
j

�JAF1
S4j−3 · S4j−2 + JAF2

S4j−2 · S4j−1

+ JAF1
S4j−1 · S4j − JFS4j · S4j+1� − h�

j

Sj
z, �1�

where JAF1,2
��0� denote the different AF couplings, JF

��0� denotes the F coupling, and h is the external magnetic
field. We take g�B=1 for convenience. The schematic spin
configuration for the tetrameric HAFC is depicted in Fig. 1.
Here we would like to remark that a spin-5/2 tetrameric
HAFC compound, C44H36N16Mn2, with alternating cou-
plings AF1AF2AF1-F was synthesized experimentally.16

Since the DMRG calculations on most physical properties of
such a spin-5/2 tetrameric HAFC are impermissible for our
present computing capacity, and considering that the spin-1/2
tetrameric HAFC is more fundamental and interesting and
can be readily made as comparisons to other Haldane spin
systems, we opt to pay attention to the tetrameric system
with spin-1/2 in the following. Meanwhile, for reasons of
comparison, some results on the spin-5/2 tetrameric HAFC
will also be calculated.

Let us first discuss some cases of the present model.
When JAF1

=0, the system is decoupled into isolated dimers
with JAF2

or JF couplings. The dimers coupled by JAF2
form

local singlets while those coupled by JF form local triplets.
Thus, the excitation of the system from Stot

z =0 to Stot
z = �1 is

gapless due to the triplets.
When JAF2

=0, the system is decoupled into isolated tet-
ramers, which becomes exactly soluble. In the absence of an
external field, the ground state of the tetramer is antiferro-
magnetic with Stot=0, and the first excited state is threefold
degenerate with Stot=1. The gap � is

� =
1

2
��4JAF1

2 + 2JAF1
JF + JF

2 − JF� , �2�

which increases monotonically with JAF1
but decreases with

JF. When JF�JAF1
, the gap has an asymptotic form �

�JAF1
�1+3JAF1

/2JF� /2 and equals JAF1
/2 when JF→�.

In the limit JF=0, the ground state of the tetramer is also
antiferromagnetic with Stot=0, and the first excited state is

threefold degenerate with Stot=1. The gap � from the ground
state to the first excited state is

� =
1

2
�JAF1

+ �4JAF1

2 − 2JAF1
JAF2

+ JAF2

2 − �JAF1

2 + JAF2

2 � ,

�3�

which enhances monotonically with JAF1
but decreases with

JAF2
. When JAF2

�JAF1
, the gap behaves as ��JAF1

2 /2JAF2

and vanishes when JAF2
→�.

In the large JF limit, the two spins coupled by JF form a
spin-1, and the model reduces to a Heisenberg chain with
alternating spin-�1, 1/2, and 1/2�,

HJF→� = �
j
�1

2
JAF1

S3j−2 · S3j−1 + JAF2
S3j−1 · S3j

+
1

2
JAF1

S3j · S3j+1� , �4�

where S j is the spin operator with S=1. This model appears
to be rarely studied.

For arbitrary couplings, we will apply the DMRG �Refs.
17 and 18� method to explore the ground-state properties of
the tetrameric chain defined in Eq. �1�. In the following
DMRG calculations, the chain length is taken as N=160, and
the Hilbert space is truncated to 100 most relevant states. In
the calculations for correlation function and string order, 160
optimal states are kept for accuracy. Open boundary condi-
tions are adopted. The truncation error is less than 1�10−8

in all calculations.

III. MAGNETIZATION, HALDANE-LIKE GAP,
CORRELATION FUNCTION, AND STRING ORDER

A. Magnetization

Due to the competition between interactions and the ex-
ternal magnetic field, a quantum magnet often shows exotic
properties under magnetic fields. A field can close the zero-
field gap and may induce magnetization plateaus under some
conditions.19–22 Therefore, we shall investigate the magnetic
properties of the present alternating tetrameric system in a
longitudinal field. Many cases with different couplings have
been calculated. Here the results of the case with
JAF1

:JAF2
:JF=1:1 :1 are presented for example. Figure 2�a�

shows the magnetic-field dependence of the magnetization
per site m�h�. The system exhibits two magnetization pla-
teaus: a zero-field gap and a m=1 /4 plateau, both of which
satisfy the Oshikawa-Yamanaka-Affleck �OYA� �Ref. 21�
condition n�S−m�=integer, with n as the period of the
ground state, S as the magnitude of spin, and m as the mag-
netization per site. A similar magnetization curve has been
found in the p-merized antiferromagnetic spin chain with p
=4.23 Both systems have shown all plateaus that the OYA
condition permits. The m=0 plateau in the present system
exhibits a spin gap in the spectrum, which is from the singlet
ground state to the triplet excited states. Such a gap has also
been found in the spin-1/2 F-AF alternating Heisenberg
chain.8 In such spin-1/2 chains with even lattice translation

FIG. 1. �Color online� Schematic representation of the tet-
rameric Heisenberg spin chain with alternating couplings described
by Hamiltonian �1�.
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symmetry, the spectrum could have a gap even if the ground
state has no spontaneous translation symmetry breaking.21,24

In contrast, spin-1/2 chains with odd lattice sites per unit cell
are gapless if the translation symmetry does not break spon-
taneously, like the spin-1/2 Heisenberg chain25 and the spin-
1/2 F-F-AF trimerized chain.9 Further discussions on this
gapped ground states will be presented below.

For the m=1 /4 plateau, the local magnetic moment �Sj
z	

and the spin-spin correlation function �S0
zSj

z	 are calculated.
These two quantities show a perfect sequence with a period
of 4 and �S0

zSj
z	 has a long-range order. It is shown that �Sj

z	
behaves as 
. . . , �S1 ,S2 ,S2 ,S1� , . . .� with S1=0.4468 and S2
=0.0532 giving rise to the magnetization per site m=1 /4 as
shown in Fig. 2�b�. The plateau state can be described by an
approximate wave function,

�i = a�↑4i−3↑4i−2↑4i−1↓4i	 + b�↑4i−3↑4i−2↓4i−1↑4i	

+ c�↑4i−3↓4i−2↑4i−1↑4i	 + d�↓4i−3↑4i−2↑4i−1↑4i	

�i = 1, . . . ,N/4� , �5�

where ↑ j �↓ j� denotes spin up �down� on site j and N is the
total site number. If the coefficients a2=d2=S2 and b2=c2

=S1, the local magnetic moment and the spin-spin correlation
function deduced from this wave function perfectly fit into
the numerical results. The formation of the m=1 /4 plateau in
the limit JAF1

=0 is quite simple, which is helpful in under-
standing the general case. When JAF1

=0, the system is de-
coupled into the isolated dimers coupled by JAF2

or JF. After
applying a magnetic field, the dimers coupled by JF, which
are in the triplet states, become polarized, and the system
exhibits a magnetization plateau at m=1 /4. The width of the
plateau is determined by the upper critical field JAF2

leading
to full polarization.

The magnetization process at hc1
	h	hc2

and hc3
	h

	hs are shown in Figs. 2�c� and 2�d�, respectively. It is
found that the behaviors of the curves could be described as

m�h� = m1 + �h − h1��m2 − m1�/�h2 − h1� + 
�h2 − h��h − h1

− ��h − h1��h2 − h , �6�

where h1 �h2� and m1 �m2� are the lower �upper� critical field
and the corresponding magnetization per site, respectively,
and 
 and � are two parameters. For hc1

	h	hc2
, 
=0.95

and �=1.2; while for hc3
	h	hs, 
=3.2 and �=4.0. The

curves obtained from Eq. �6� are also shown in the figures,
which fit into the DMRG results quite well.

B. Haldane-like gap

To understand the properties of the ground state of the
spin-1/2 tetrameric alternating HAFC in the absence of a
magnetic field, the spin gap, spin-spin correlation function,
and string order are studied by means of the DMRG method
in the whole parameter region, which will be compared with
the features of Haldane phase.

We consider the spin gap � from the ground state to the
triplet excited states, namely,

� = E1 − E0, �7�

where E0 is the ground-state energy and E1 is the lowest
energy in the subspace with Stot

z =1, and JAF1
is chosen as the

energy scale. JF and JAF2
dependences of the gap are pre-

sented in Figs. 3�a� and 3�b�, respectively. Figure 3�a� shows
the gap as a function of JF for JAF2

=0.0, 0.1, 0.5, 1.0, and

FIG. 2. �Color online� �a� The external field dependence of the
magnetization per site m�h� for the spin-1/2 tetrameric HAFC with
couplings JAF1

:JAF2
:JF=1:1 :1. �b� The local magnetic moment

�Sj
z	 in the magnetization plateau states. The DMRG results of m�h�

in the gapless states can be fairly fitted by Eq. �6� for �c� hc1
	h

	hc2
and �d� hc3

	h	hs.

FIG. 3. �Color online� �a� The JF dependence of the gap � for
JAF2

=0.0, 0.1, 0.5, 1.0, and 2.5. �b� The JAF2
dependence of the gap

� for JF=0.0, 0.1, 0.5, 1.0, and 2.5. �c� The gap behaviors with
JAF1

/JF for large JF. The inset shows the gap behaviors with
JAF1

/JAF2
for large JAF2

. �d� The gap behaviors with JF for large
JAF1

. The inset shows the gap behaviors with JAF2
for large JAF1

.
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2.5. When JAF2
=0, the gap is determined by Eq. �2�. It is

shown that with the increase of JF, the gap � smoothly de-
creases and converges to a certain value �c when JF→�. �c
is determined by JAF2

. In the limit of JAF2
=0, �c=JAF1

/2. In
the large JF limit, the system is equivalent to the spin-�1,
1/2,1/2� model, which will be proved to have a gap by the
nonlinear � model below where �c is related to the gap of
this model. With the increase of JF, the tetrameric system
changes from a tetramer model to the spin-�1,1/2,1/2� model,
and the gap decreases continuously. In Fig. 3�b�, the gap is
plotted as a function of JAF2

for JF=0.0, 0.1, 0.5, 1.0, and
2.5. When JF=0, the gap is evaluated by Eq. �3�. It is ob-
served that the gap decreases rapidly with increasing JAF2
and tends to zero when JAF2

→�. With the increase of JAF2
,

the tetrameric chain changes from a tetramer model to a sys-
tem with relative small JAF1

interactions, which is gapless
when JAF1

=0. From the above discussions, it can be seen
that both JF and JAF2

give rise to the decrease of the gap but
with different behaviors. The influence of JAF1

on the gap is
found to be distinct from those of JAF2

and JF. The gap would
increase with JAF1

. Because the gap only vanishes when
JAF2

/JAF1
→�, it is reasonable to conclude that a gap would

be generated by an arbitrary small JAF1
.

Next, let us consider the asymptotic behaviors of the gap.
In Fig. 3�c�, the gap as a function of JAF1

/JF is plotted in
large JF limit for JAF2

=0.5 and 1.0. It is shown that the gaps
linearly converge to �c. JAF2

alters the value of �c but does
not change this linear asymptotic behavior. Thus, the varia-
tions of the gap for large JF could be evaluated by

� = JAF1� �c

JAF1

+ �
JAF1

JF
� , �8�

where �c and the parameter � are determined by JAF2
. In the

large JAF2
limit, the isolated tetramer system with JF=0 gives

�
JAF1

2 /JAF2
. The inset of Fig. 3�c� shows the gap behaviors

for JF=1.0 and 2.5 for large JAF2
, which exhibits an

asymptotic behavior,

� �
JAF1

2

JAF2

e
JAF1
/JAF2, �9�

where 
 is a parameter, and 
=3.2 and 1.8 for JF=1.0 and
=2.5, respectively. The extrapolations show the linear behav-
iors near JAF1

=0. When JAF1
dominates, the gap behaviors

are shown in Fig. 3�d�. It can be seen that the gap decreases
linearly with increasing both JAF2

and JF for large JAF1
.

The DMRG results suggest that the system is in disor-
dered spin liquid states with a spin gap. The gap varies
monotonically with the couplings and does not show any
singularity. We have calculated the ground-state energy
against the couplings and found that the ground-state energy
varies also monotonically with the interactions, and there is
no any nonanalyticity. This nonanalyticity of the ground-
state energy suggests an absence of the quantum phase tran-
sition in this system.26

It has been shown that the gap always exists if JAF1
is

finite. However, it is hard to identify the validity of this
statement from numerical calculations when JAF2

�JAF1
.

Thus, we consider the nonlinear � model �NLSM� of this
tetrameric system. Because the gap decreases with JF, we
consider the case in the limit of JF→� when this tetrameric
system is equivalent to the spin-�1,1/2,1/2� model, which is
described by Eq. �4�. The NLSM for such spin chains has
been developed by Affleck,27 Fukui and Kawakami,28 and
Takano.29 The magnitude of S j is denoted as sj, which could
be 1/2 or 1 here. The period of the system 2b is regarded as
6 for convenience. After a standard procedure,29 we have the
effective action for the spin-�1, 1/2, 1/2� Hamiltonian,

Seff = �
0

�

d��
0

L

dx� 1

2aJ�1�� J�1�

J�2� −
J�0�

J�1�����m�2

− i
J�0�

J�1�m · ���m � �xm� +
aJ�0�

2
��xm�2� , �10�

where 1 /� denotes the temperature, 
 is the lattice spacing,
L is the length of the chain, m presents the spin variables,
and 
Jn� are defined by

1

J�n� =
1

2b
�
q=1

2b
�s̃q�n

J̃q

�n = 0,1,2� , �11�

with J̃q=Jqsqsq+1 and s̃q=�k=1
q �−1�k+1sk. The topological

angle � is 4�J�0� /J�1�, and the NLSM provides a gapless
condition when � /2� is a half-odd integer. After applying
these equations to the spin-�1,1/2,1/2� model, we have the
gapless condition

JAF1

JAF2

=
6l − 11

6 − 4l
�l = positive integer� . �12�

As JAF1
and JAF2

are both positive, Eq. �12� could not be
satisfied in any case, which indicates that even in the large JF
limit the present tetrameric chain is gapped for any JAF1
�0 and JAF2

�0. Considering the effect of JF on the gap, we
could conclude that this spin-1/2 tetrameric Heisenberg AF
chain is always gapped if JAF1

�0.
For comparison, the gap of the spin-5/2 tetrameric HAFC

is computed by utilizing the DMRG method. The chain
length is taken as 140 and the Hilbert space is truncated to
400 optimal states. The truncation error is less than 10−13 in
energy calculations. In Fig. 4, the DMRG results show that
the extrapolations of the gap converge to nonzero values.
Similar to the case with spin-1/2, the gap of this spin-5/2
tetrameric HAFC also decreases with both increasing JAF2
and JF. The gap diminishes more rapidly with increasing
JAF2

, which is also a feature of the spin-1/2 case. Although
the gap of the spin-5/2 system is smaller than that in the
spin-1/2 case, the qualitative behaviors of the gap for both
systems appear to be similar.

C. Correlation function and static structure factor

To characterize the gapped ground states of the tetrameric
spin chain, let us investigate the spin-spin correlation func-
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tion �Si
zSj

z	 and the static structure factor S�q� that is defined
as the Fourier transform of the correlation function,

S�q� =
1

N
�
i,j

�Si
zSj

z	eiq�i−j�. �13�

Our DMRG results show that the correlation function decays
exponentially in the gapped states. For different couplings,
the correlation length and the behavior of the correlation
function have dramatic changes, which could be displayed
more clearly in the static structure factor S�q�.

We have performed a large amount of calculations on the
correlation function and static structure factor in a wide
range of the parameter region. The changes of S�q� are
shown in Figs. 5�a� and 5�b� for some parameters as ex-
amples. In Fig. 5�a�, for JF=0.1, JAF2

=0.1, 1.0, and 5.0, S�q�
shows an obvious maximum at q=�, and with the enhance-
ment of JAF2

, there are two small maxima appearing at q
=� /3 and 5� /3. When JAF2

=0.1 and JF=5.0, the maximum
at q=� becomes a valley and two small maxima appear near
q=3� /5 and 7� /5. With further increasing JAF2

, S�q� ex-
hibits a totally different behavior showing four peaks at

q=� /4, 3� /4, 5� /4, and 7� /4 as shown in Fig. 5�b�. In
these numerical results, S�q� shows three different behaviors
due to the competition of the couplings. It will be shown that
some features of S�q� mentioned above are determined by
the short-range correlations, and some others are due to the
increase of the correlation length and the translation symme-
try of the ground states.

The correlation function of this model has no long-range
order but exhibits a short-range order characterized by some
qmax of S�q�. In the limit JAF2

=0 and JF=0, the tetrameric
chain is decoupled into singlet dimers, and the static struc-
ture factor has a simple form S�q�= �1−cos q� /4. The short-
range correlations �S2i−1

z S2i
z 	 are reflected by the maximum of

S�q� at q=�. When JAF2
is switched on, the tetrameric chain

becomes a tetramer system. The short-range correlations of
the tetramer produce another two maxima of S�q� at q
=� /3 and 5� /3 as shown in Fig. 5�c�. On the other hand,
when JF is turned on, the short-range correlations drive the
maximum of S�q� at q=� to split into two small maxima,
which move toward q=3� /5 and 7� /5 with increasing JF,
as presented in Fig. 5�d�. The distinct behaviors of S�q� in
the two situations are due to the different couplings of the
tetramers. These results found in the tetramer systems also
explain the behaviors of S�q� for small JAF2

or JF shown in
Figs. 5�a� and 5�b�. When JAF2

or JF is smaller than JAF1
, the

correlation length of the system is quite short reflecting a
highly disordered ground state, and the correlation function
and static structure factor could be well characterized by the
corresponding decoupled tetramer system.

When both JAF2
and JF are large enough, S�q� exhibits a

totally different behavior. There are four peaks at q=� /4,
3� /4, 5� /4, and 7� /4 as shown in Fig. 5�b� when JAF2
=JF=5.0. In this case, the correlation function keeps expo-
nentially decaying but shows a structure with a period of 4
and its correlation length becomes large. It is also observed
that the correlation function has a characteristic such as
�Si

zSj
z	
�Si

zSj+1
z 	 if the spins S j and S j+1 are coupled by JF,

and �Si
zSj

z	
−�Si
zSj+1

z 	 if the spins S j and S j+1 are coupled by
JAF2

. This feature reflects that the spins coupled by JF behave
like triplets, and the spins coupled by JAF2

behave like sin-
glets. As the correlation function that decays exponentially is
modulated with a period of 4, the static structure factor S�q�
shows the peaks at q=� /4, 3� /4, 5� /4, and 7� /4. Such a
modulated structure of S�q� has also been observed in the
spin-1/2 alternating F-AF �Ref. 30� and spin-1/2 trimerized
F-F-AF Heisenberg chains,31 which show the peaks of S�q�
at q=� /2 and 3� /2 and q=� /3, �, and 5� /3, respectively.
Generally speaking, for an exponentially decaying correla-
tion function that is modulated with a period of n, the static
structure factor S�q� could show antiferromagnetic peaks at
q=��1+2l� /n with l=0,1 ,2 , . . . ,n−1.

Although the ground-state energy has no nonanalyticity in
the parameter space, namely, no quantum phase transition
happens, the static structure factor S�q� shows rich features
of the ground states for different couplings in this tetrameric
system.

D. Topological string order

In order to investigate natures of the Haldane-like phase
in the disordered phase of the tetrameric chain, we have cal-

FIG. 4. �Color online� The gap � of the spin-5/2 tetrameric
HAFC as a function of the inverse of chain length �1 /L� for �a�
JF=1.0, JAF2

=1.0, 2.0, and 5.0, and �b� JAF2
=1.0, JF=1.0, 2.0, and

5.0.

FIG. 5. �Color online� The DMRG results of the static structure
factor S�q� in the gapped ground states of the spin-1/2 tetrameric
HAFC for �a� JF=0.1, JAF2

=0.1, 1.0, and 5.0; �b� JF=5.0, JAF2
=0.1, 1.0, and 5.0; �c� JF=0.0, JAF2

=0.1, 1.0, and 5.0; and �d�
JAF2

=0.0, JF=0.1, 1.0, and 5.0.
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culated the string order to detect the hidden symmetry in the
gapped phase. The nonlocal string order was found in spin-1
antiferromagnetic Heisenberg chain by Den Nijs and
Rommelse.3 They found that although the spins with Si

z

=1,0 ,−1 are not ordered in position, their sequence has a
hidden Néel order; that is, if all sites with Si

z=0 are removed,
the left sites with Si

z=1,−1 have Néel orders. The string or-
der was found to be a common feature of Haldane phase.
Hida8 suggested a string order for spin-1/2 F-AF chain,
which was used to characterize the phase diagram of this
spin chain.32 The string order for spin ladders has also been
considered in distinct gapped phases.33

Here we suggest a string order for this tetrameric system
and use it to characterize the disordered spin liquid phase.
Considering the basic feature of string order and the transla-
tion symmetry of the tetrameric Hamiltonian, we define four
string operators for this tetrameric chain, which are denoted
by �4i−3,4j+2


 , �4i−2,4j+3

 , �4i−1,4j


 , and �4i,4j+1

 . �4i−3,4j+2


 is
defined as

�4i−3,4j+2

 = − S4i−3


 exp�i� �
k=4i−2

4j+1

Sk

�S4j+2


 , �14�

and the corresponding order parameter is

O4i−3,4j+2

 = lim

�j−i�→�
��4i−3,4j+2


 	 , �15�

where i and j denote the unit cell and 
=x , y, or z. The other
three ones are defined in the similar way and they could be
obtained by a translation of �4i−3,4j+2


 . As the present model
in the absence of a magnetic field has a SU�2� symmetry, we
need only to consider �z. The spin configuration shows that
�4i−3,4j+2

z and �4i−1,4j
z have the same topological structure,

while �4i−2,4j+3
z and �4i,4j+1

z possess another same structure.
The DMRG calculations have been performed on the four
string orders. It was found that the string orders of the first
structure have the same finite value, while the string orders
of the second structure are both zero in the whole parameter
space. For the spin-1/2 F-AF alternating chain, the two dif-
ferent definitions of string order also have two different val-
ues: one finite and one zero.34 This difference would be ex-
plained in Sec. IV. Here we only consider the nonvanishing
string order, which would be denoted as Ostring

z below.
When both JAF2

and JF are equal to zero, the string order
has its maximum 0.25 as shown in Fig. 6. After tuning up JF
or JAF2

, the system becomes tetramer assemblies. In the limit
JAF2

=0, the string order is evaluated from the wave function
of the tetramer ground state as a function of JF /JAF1

,

Ostring
z =

4 +
JF

JAF1

+�4 + 2
JF

JAF1

+ � JF

JAF1

�2

12�4 + 2
JF

JAF1

+ � JF

JAF1

�2
, �16�

while for JF=0, the string order as a function of JAF2
/JAF1

is
expressed as

Ostring
z =

4 −
JAF2

JAF1

+�4 − 2
JAF2

JAF1

+ � JAF2

JAF1

�2

12�4 − 2
JAF2

JAF1

+ � JAF2

JAF1

�2
, �17�

as shown with solid lines in Figs. 6�a� and 6�b�, respectively.
From these equations and numerical simulations, one may
find that the string order in the case of JAF2

=0 has an
asymptotic behavior,

Ostring
z �

1

4
−

1

64� JF

JAF1

�2

e−JF/2JAF1, �18�

when JF�JAF1
. In the case of JF=0, it behaves as

Ostring
z �

1

4
−

1

64� JAF2

JAF1

�2

eJAF2
/2JAF1, �19�

when JAF2
�JAF1

. On the other hand, in the limit of JAF2
=0,

the string order has an asymptotic form when JF�JAF1
,

Ostring
z �

1

6
+

1

4

JAF1

JF
e−2JAF1

/JF, �20�

while it behaves as

Ostring
z �

1

4

JAF1

JAF2

e2JAF1
/JAF2, �21�

when JAF2
�JAF1

for the case JF=0.
Besides the limiting cases, the string order is evaluated as

a function of the couplings by means of the DMRG method
to detect the hidden symmetry in the gapped phase. Figure 6
presents the DMRG results of the string order as functions of
JF /JAF1

and JAF2
/JAF1

. In Fig. 6�a�, the string order is shown

FIG. 6. �Color online� The string order as a function of JF /JAF1
�a� and JAF2

/JAF1
�b�. The asymptotic behavior of the string order

for �c� large JF or JAF2
and for �d� large JAF1

.
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as a function of JF /JAF1
for JAF2

=0.1, 0.5, 1.0, and 2.5. The
string order decreases monotonically with JF /JAF1

and con-
verges to a nonzero value when JF /JAF1

→�. In Fig. 6�b�, the
string order as a function of JAF2

/JAF1
is evaluated for JF

=0.1, 0.5, 1.0, and 2.5. It is shown that it decreases rapidly
with JAF2

/JAF1
and vanishes when JAF2

/JAF1
→�. As is seen,

the string order is always finite in the gapped phase indicat-
ing the existence of a hidden symmetry in this phase. The
variations of the string order show the same tendencies as the
gap behaviors. The string order has its maximum when JF
=0 and JAF2

=0 where the system also shows the maximum
of the gap. When the gap vanishes in the case of JAF1

=0, the
string order is also zero. This indicates that the opening of
the gap and its behaviors could be characterized by this
string order.

The asymptotic behaviors of the string order are shown in
Figs. 6�c� and 6�d�. Figure 6�c� shows the string orders when
JF�JAF1

for JAF2
=0.5 and 1.0. The inset shows the string

orders when JAF2
�JAF1

for JF=0.5 and 1.0. Figure 6�d� and
the inset show the string orders when JAF1

�JF and JAF1
�JAF2

, respectively. It is found that the asymptotic behaviors
of the string orders preserve the features as those of the cor-
responding tetramer models, which are described by Eqs.
�18�–�21�.

It should be noticed that although the string order is non-
local, it could measure some localized singlet correlation that
depicts the singlet state. The string order has been found to
characterize the behaviors of the gap perfectly as shown in
Figs. 6�a� and 6�b�. The gap monotonically increases with
JAF1

and is related to the singlet states of the spins coupled
by JAF1

, which could also be measured by the string order.
When the system is the assembly of localized singlet spins
coupled by JAF1

, the string order has its maximum value of
0.25. With the disappearance of the singlet spins for JAF1
=0, the string order also vanishes. In the spin-1/2 F-AF al-
ternating chain, the gap is also related to the singlet dimers
coupled by the AF interactions, and the string order could
measure the singlet correlation.8 Hida8 pointed out that such
a string order could distinguish the valence-bondlike disor-
dered states from other disordered states. In this tetrameric
chain, the valence bonds, namely, the singlet states in the
spins coupled by JAF1

, are characterized by the string order.
The finite string order reveals the hidden Néel order in the

gapped states of the tetrameric chain, which is regarded as a
feature of Haldane phase. For this tetrameric model, the
valence-bond state could provide us a picture for the hidden
Néel order. According to our definition of the string order,
the exponent part of the string operator, which is between the
spins at two boundaries, could be regarded as those con-
structed by the spin pairs coupled by JAF2

or JF. Conse-
quently, the valence bonds form between spins coupled by
JAF1

leading to that the spin pairs coupled by JAF2
or JF could

have Stot=1 ,0 ,−1. After removing the spin pairs with Stot
=0, we can see a perfect Néel order of the spin pairs.

IV. DUALITY AND HIDDEN SYMMETRY

In the Haldane phase of the spin-1 Heisenberg chain4 and
spin-1/2 F-AF alternating chain,35 the hidden symmetry mea-

sured by string order was found to be a Z2 symmetry after a
dual transformation, and the string order is transformed into
a ferromagnetic order to measure such a Z2 symmetry in the
dual space. In general, the string orders in both x and z axes
are considered to construct a Z2�Z2 symmetry of the trans-
formed Hamiltonian. The hidden symmetry could be re-
vealed by means of the dual transformation,35,36 and the
Haldane phase was characterized by a fully breaking of the
Z2�Z2 symmetry.4,32 It is interesting that this tetrameric
chain also shows a hidden Z2�Z2 symmetry, which is just
measured by the string order defined above and fully break-
ing in this gapped phase. For simplicity, we start with the
Hamiltonian rewritten in terms of Pauli matrices,

H = �
j

�JAF1
�4j−3 · �4j−2 + JAF2

�4j−2 · �4j−1

+ JAF1
�4j−1 · �4j − JF�4j · �4j+1� . �22�

After applying the standard Kramers-Wannier37 dual trans-
formation D to the whole system, we get the transformed
operators,

D� j
x� j+1

x D−1 = � j−1+1/2
z � j+1+1/2

z ,

D� j
y� j+1

y D−1 = − � j−1+1/2
z � j+1/2

x � j+1+1/2
z ,

D� j
z� j+1

z D−1 = � j+1/2
x , �23�

where � j+1/2

 �
=x ,y ,z� are the Pauli operators in the dual

space. In order to present the spins more clearly, we merely
change the labeling of the lattice sites by the following rule:

R:r →
1

2
�r + 2 −

1

2
� . �24�

After relabeling, we write the Pauli matrices on the half-odd-
integer spins as � and apply the inverse of the Kramers-
Wannier dual transformation only on � spins. As a result, the
odd sites of both � and � spins are rotated by � about the x
axis. Thus, the transformed Hamiltonian has the form of

H̃ = − JAF1�
j

�� j
z� j+1

z + � j
z� j+1

z + � j
z� j+1

z � j
z�i+1

z �

+ �
j

�JAF2
�2j

x + JF�2j+1
x � + �

j

�JAF2
�2j

x + JF�2j+1
x �

+ �
j

�JF�2j+1
x �2j+1

x − JAF2
�2j

x �2j
x � . �25�

The tetrameric Heisenberg chain is transformed into a quan-
tum Ashkin-Teller �AT� model in a transverse field, which is
described by Eq. �25�. This AT model consists of two Ising
chains coupled by four-component interactions. The trans-
verse field parts measured by JAF2

and JF in this model play
the role of temperature in classical systems. They compete
with JAF1

to determine the behavior of the system, which has
been demonstrated in our numerical results. Similar to the
quantum Ising model,26 a phase transition, which is referred
to as a spontaneous breaking of the Z2 symmetry and mea-
sured by the ferromagnetic order, may happen because of
these competitions. The symmetry of this quantum AT model
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can be easily read off. It is invariant under rotations of �
about the x axis that are applied to � spins alone or � spins
alone. Thus, it has a Z2�Z2 symmetry.

After the same dual transformation, the difference of the
four string operators defined above is revealed. The vanish-
ing string orders are transformed into

U�4i−2,4j+3
z U−1 = − �k=2i

2j+2�k
x,

U�4i,4j+1
z U−1 = − �k=2i+1

2j+1 �k
x, �26�

where U denotes the whole transformation. These two string
operators are still expressed in terms of nonlocal operators
and could not measure the spontaneous breaking of the dis-
crete symmetry. In contrast, the nonvanishing string orders
become ferromagnetic correlations in the dual space,

U�4i−3,4j+2
z U−1 = �− 1� j−i�2i−1

z �2j+2
z ,

U�4i−1,4j
z U−1 = �− 1� j−i+1�2i

z �2j+1
z , �27�

where the factors �−1� j−i and �−1� j−i+1 come from the rota-
tion transformation on the odd spins. These order parameters
measure possible spontaneous breaking of the Z2 symmetry
of � spins. The ferromagnetic order of � spins corresponds to
the string order defined in the x component. When both
JAF2

=0 and JF=0, the AT model becomes two ferromagnetic
Ising chains coupled by the four-component interactions. The
ferromagnetic correlation has the maximum 1, and the Z2
�Z2 symmetry is totally broken because of the full polariza-
tion along the z axis. In contrast, when JAF1

=0, the AT model
becomes isolated rungs in a transverse field. The ferromag-
netic correlation is zero, and the Z2�Z2 symmetry is pre-
served. In our model, we are considering a SU�2� symmetric
model; thus the x component of the string order equals to that
of the z component, namely, Ox=Oz. It turns out that Oz

could also be used to measure the Z2 symmetry of � spins.
The nonvanishing string order Oz indicates that the Z2�Z2
symmetry are fully breaking in the tetrameric system, which
is an important evidence for the Haldane-like type of the
gapped phase.

In this quantum AT model, the different effects of the
couplings JAF2

and JF could be seen more clearly. As shown
in the transformed AT Hamiltonian �25�, the odd-site spins
have an antiferromagnetic interaction JF�2j+1

x �2j+1
x , which has

an inverse effect on the transverse field part JF��2j+1
x +�2j+1

x �,
and thus counteracts the polarization of the odd-site spins on
the x direction. In contrast, the even-site spins have a ferro-
magnetic interaction −JAF2

�2j
x �2j

x , which promotes the polar-
ization on the x direction. This difference could partly ex-
plain why the gap and string order would vanish when JAF2
→� but converge to finite values when JF→�.

V. VALENCE-BOND GROUND STATE FOR
THE HALDANE-LIKE PHASE

The nature of the spin-1 Heisenberg AF model can be
demonstrated by the AKLT model where a Hamiltonian with
the valence bond is constructed.2 The Haldane-like gapped
phase of this tetrameric system implies that it is reasonable

to expect a valence-bond ground state that could explain the
numerical results and support our analysis. As discussed
above, the gap and string order are related to the singlet
states of the spins coupled by JAF1

. Therefore, a valence-
bond-solid-�VBS� state picture for the ground state of the
tetrameric chain can be proposed as shown in Fig. 7�a�. The
singlet valence bonds, which are represented as short lines,
form between the spins coupled by JAF1

. The gap, which is
the energy needed to break the bonds, should increase with
JAF1

. This has been confirmed by our numerical results. After
applying a magnetic field, the magnetization plateau at m
=1 /4 could appear when the bonds are broken, and the width
of the plateau is thus mainly determined by JAF2

as analyzed
in Sec. III. In Figs. 7�b� and 7�c�, the exponential parts of the
two topologically different string orders are encircled by
dashed lines. The numbers under the lines denote the spin
�Si

z+Si+1
z �. The nonvanishing string order has the hidden Néel

order as shown in Fig. 7�b�. But in Fig. 7�c�, the vanishing
string order does not exhibit the hidden Néel order in this
picture.

In the absence of a magnetic field, we propose a trial
wave function ��	, which is defined as a linear combination
of two functions ��	 and ��	, i.e., ��	=A��	+B��	, for this
VBS state picture. The wave function ��	 is defined as

��	 = �
1
� �
2

� ¯ � �
4L−1
� �
4L

�
1
2
¯ �
4L−1
4L,

�28�

where �
i
�
i=1,2� denote the eigenstates of Sz with eigen-

values 1/2 and −1 /2 of the spin on the site i and �
� is the
antisymmetric tensor with �12=1 /�2. These wave functions
are written under periodic boundary conditions and thus L is
even. This function is one of the ground states of the
Majumdar-Ghosh model and qualitatively measures the
ground states of this tetrameric system in large JAF1

limit. In
the state ��	, the system has the maxima for both the gap and
the string order. The singlet correlation of the spins coupled
by JAF1

also has the maximum. In order to give a trial func-
tion that could depict the ground state, we introduce another
wave function ��	, which is defined as

��	 = �
2
� �
3

�
2
3 � �
4
� �
5

�
4
5 � ¯ � �
4L−2

� �
4L−1
�
4L−2
4L−1 � �
4L

� �
1
�
4L
1, �29�

FIG. 7. �Color online� A schematic valence-bond picture for the
gapped ground state of the tetrameric Heisenberg chain. �a� A typi-
cal configuration of the valence-bond state for the tetrameric chain
in the absence of a magnetic field. The solid bullet denotes spin up,
the hollow bullet denotes spin down, and the short line denotes the
singlet bond. �b� The nonvanishing string order. �c� The vanishing
string order.
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where �
� is the symmetric tensor with �11=�22=0 and
�12=1 /�2. ��	 measures the states in both large JAF2

and JF

limit. In this state, the system is gapless and the string order
is vanishing.

In the thermodynamic limit L→�, ��	 and ��	 are or-
thogonal, namely, �� ��	=0. The normalization of the trial
function ��	 thus requires A2+B2=1. We have performed
calculations of the physical properties on this trial function in
the thermodynamic limit. It is found that the trial function
��	 has a vanishing local magnetic moment �Sj

z	 and a short-
range spin correlation function. The string order is found to
be Ostring

z = 1
4A2, which is finite in the state ��	 and could well

fit into the numerical results shown in Figs. 6�a� and 6�b�
when the coefficient A is chosen as

A2 = � 4 − JAF2
/JAF1

3�4 − 2JAF2
/JAF1

+ �JAF2
/JAF1

�2
+

1

3�
�� 4 + JF/JAF1

3�4 + 2JF/JAF1
+ �JF/JAF1

�2
+

1

3� . �30�

The numerical results of the gap, as well as this valence-
bond-state picture, indicate that the gap is induced by the
valence bond, namely, the singlet state between the spins
coupled by JAF1

. The string order could well describe the gap
and the singlet correlation that measures the singlet state of
the spins coupled by JAF1

. This above picture shows the cru-
cial role of the valence bond in the formation of the Haldane-
like gap and hidden symmetry.

VI. SUMMARY AND DISCUSSION

By means of the DMRG method, we have studied the
magnetic properties, spin gap, spin-spin correlation function,
and string order of the spin-1/2 tetrameric HAFC with alter-
nating couplings AF1-AF2-AF1-F. Two magnetization pla-
teaus at m=0 and 1/4 are found, which satisfy the OYA
condition for such a spin chain with a period of 4. For the
m=1 /4 plateau states, an approximate wave function is pro-
posed, which fits into the numerical results of the local mag-
netic moment and spin-correlation function perfectly. The
magnetization process of the two regions between the pla-
teaus is fitted well by Eq. �6�.

Besides the m=1 /4 plateau, the gapped ground state in
the absence of the magnetic field is also investigated. The
system is found to have a gap from the singlet ground state
to the triplet excited states. The gap changes monotonically
with the couplings and does not show any level crossing. It
decreases with JF and JAF2

but increases with JAF1
. The

ground-state energy has no nonanalyticity in the parameter
space, which implies an absence of the quantum phase tran-
sition. The asymptotic behaviors of the gap have been calcu-
lated, which have the same features as those in the isolated
tetramer systems. Combining the numerical results with the
nonlinear � model, it is shown that a gap would be generated
by an arbitrary small JAF1

and thus this system is always
gapped if JAF1

�0.

The spin-spin correlation function is uncovered to decay
exponentially in the gapped states; but the correlation length
and the behaviors of the correlation function show dramatic
changes for different couplings, which are observed in the
variations of the peaks of the static structure factor S�q�,
reflecting a complex competition of the interactions. When
JAF2

or JF is small compared with JAF1
, S�q� is dominated by

short-range correlations. It would exhibit three maxima at
q=� /3,� and 5� /3 when JF is small. When JAF2

is small,
the maximum at q=� becomes a valley and two small
maxima appear near q=3� /5 and 7� /5. In contrast, when
both JF and JAF2

are large enough, S�q� exhibits four peaks at
q=� /4, 3� /4, 5� /4, and 7� /4, which is due to the increase
of the correlation length and the translation symmetry of the
ground states.

In order to investigate the hidden symmetry of the gapped
ground states, we proposed a string order and performed cal-
culations to detect the hidden symmetry. The string order is
found to be nonvanishing in the gapped phase indicating a
hidden symmetry. More importantly, the behaviors of the
string order have the same tendencies as that of the gap. The
opening of the gap and its variations could be well described
by this nonlocal order. The gap is related to the singlet state
of the spins coupled by JAF1

and increases with this interac-
tion. Thus, it can be regarded that the gap is determined by
the singlet correlation. The nonlocal string order could also
measure this local singlet correlation. The singlet state of the
spins coupled by JAF1

provides a picture to understand the
hidden Néel order reflected by the finite string order. Differ-
ent from the conventional hidden Néel order, the order in the
present system is not of the singlet spins but of the spin pairs
coupled by JAF2

or JF.
The hidden symmetry measured by the string order is un-

veiled by a dual transformation. The present tetrameric
Hamiltonian is transformed into a quantum AT model, which
has a discrete Z2�Z2 symmetry. The string order becomes a
ferromagnetic order that is proper to measure this discrete
symmetry. The nonvanishing string order indicates that this
Z2�Z2 symmetry is fully breaking in the gapped phase,
which is the characteristic of Haldane phase. Thus, this tet-
rameric chain is in a Haldane-like gapped phase.

A valence-bond-solid-state picture and a trial function for
the gapped states are proposed, most properties of which
could be explained on the basis of this picture. The numeri-
cal results, as well as the VBS picture, indicate that the gap is
induced by the valence bond of the spins coupled by JAF1

.
The valence bond is measured by the singlet correlation. The
string order could well describe not only the gap but also the
singlet correlation. The critical role of the valence bond on
the formation of the Haldane-like gap and the hidden sym-
metry is unveiled.

Finally, we would like to state that unlike the spin-1/2
F-AF alternating HAFC, the present spin-1/2 tetrameric
HAFC could not reduce to an integer-spin HAFC. Therefore,
our findings extend the substance of Haldane’s conjecture
that was originally proposed for HAFCs with integer spin.
We expect that our investigations would deepen further un-
derstanding on the physical properties of low-dimensional
quantum magnetism.
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